ai-center
latest
false
- 发行说明
- 入门指南
- 通知
- 项目
- 数据集
- 数据标签
- ML 包
- 开箱即用包
- 管道
- ML 技能
- ML 日志
- AI Center 中的 Document Understanding™
- AI Center API
- 许可
- AI 解决方案模板
- 如何
- 基本故障排除指南
重要 :
请注意此内容已使用机器翻译进行了部分本地化。
新发布内容的本地化可能需要 1-2 周的时间才能完成。
AI Center
上次更新日期 2024年11月19日
图像分类
“开箱即用包”>“UiPath 图像分析”>“图像分类”
备注:
图像分类模型当前为公开预览版。
UiPath™致力于提高产品的稳定性和质量,但预览功能始终会根据我们从客户收到的反馈而随时更改。 不建议在生产部署中使用预览功能。
此模型可在 CPU 上流畅运行,但在预览期间在 GPU 上运行时可能会遇到问题。
此预览模型是可重新训练的深度学习模型,用于对图像进行分类。 您可以根据自己的数据对其进行训练,并创建 ML 技能来执行图像分类。 必须重新训练此 ML 包,如果未先训练就进行部署,则部署将失败,并显示错误,指出模型未训练。
具有已识别图像标签和置信度分数(介于 0 到 1 之间)的 JSON。
{
"response": {
"label": "car",
"confidence": 0.85657345056533813
}
}
{
"response": {
"label": "car",
"confidence": 0.85657345056533813
}
}
此包支持所有三种类型的管道(完整训练、训练和评估)。对于大多数用例,不需要指定任何参数,模型将使用高级技术来查找高性能模型。在第一次训练之后的后续训练中,模型将使用增量学习(即,在训练运行结束后将使用先前训练的版本)。
对于训练和评估数据集,请指向具有名为
images
的子文件夹的文件夹,此子文件夹可以包含具有不同类的多个输入文件夹(例如,一个名为cats
的文件夹包含猫的图片,另一个文件夹名为dogs
以及狗的照片等)。
示例:
-- <Training / Evaluation Directory>
-- images
-- Bus
-- bus001.jpg
-- bus002.jpg
-- bus003.jpg
-- Truck
-- truck001.jpg
-- truck012.png
-- truck0030.jpeg
-- Car
-- <Training / Evaluation Directory>
-- images
-- Bus
-- bus001.jpg
-- bus002.jpg
-- bus003.jpg
-- Truck
-- truck001.jpg
-- truck012.png
-- truck0030.jpeg
-- Car
分类报告
precision recall f1-score support
Positive 0.75 0.90 0.82 10
Negative 0.88 0.70 0.78 10
accuracy 0.80 20
macro avg 0.81 0.80 0.80 20
weighted avg 0.81 0.80 0.80 20
precision recall f1-score support
Positive 0.75 0.90 0.82 10
Negative 0.88 0.70 0.78 10
accuracy 0.80 20
macro avg 0.81 0.80 0.80 20
weighted avg 0.81 0.80 0.80 20
混淆矩阵
预测.csv
这是一个 CSV 文件,其中包含用于评估的测试集的预测。
filename actual predicted
38 00043.jpg Positive Positive
17 00001.jpg Positive Positive
59 00014.jpg Negative Positive
31 00015.jpg Positive Positive
15 00008.jpg Positive Positive
69 00025.jpg Negative Negative
49 00003.jpg Positive Positive
5 00034.jpg Positive Positive
36 00044.jpg Positive Positive
50 00042.jpg Negative Positive
96 00011.jpg Negative Negative
53 00046.jpg Negative Positive
94 00036.jpg Negative Negative
filename actual predicted
38 00043.jpg Positive Positive
17 00001.jpg Positive Positive
59 00014.jpg Negative Positive
31 00015.jpg Positive Positive
15 00008.jpg Positive Positive
69 00025.jpg Negative Negative
49 00003.jpg Positive Positive
5 00034.jpg Positive Positive
36 00044.jpg Positive Positive
50 00042.jpg Negative Positive
96 00011.jpg Negative Negative
53 00046.jpg Negative Positive
94 00036.jpg Negative Negative