- 发行说明
- Task Mining 概述
- 设置和配置
- 通知
- Task Mining
- 其他资源
Task Mining
DEPRECATEDUnassisted Task Mining 分析指南
本指南可在创建项目、完成操作记录并运行分析后,介绍如何使用 Unassisted Task Mining 分析结果。 它适用于业务分析师、项目管理员和其他想要了解如何解释 Unassisted Task Mining 结果并识别具有优化潜力的任务的人。 本指南还就如何处理分析中的意外结果和噪声提供指导。
为了生成结果,AI 算法会在记录的数据中查找相同步骤序列的出现位置。 它在没有任何上下文的情况下工作,因此可能会显示未自始至终完全捕获现实生活中任务的候选任务。
有时,分析结果可能包含从业务角度来看不相关的任务和步骤。 这被视为噪声。 为了确定自动化候选方案,审核人必须区分高质量任务和噪声任务,这一点很重要。
AI 算法识别的任务可能与现实生活中的任务相符,但也可能与预期有所不同。 并非所有候选任务都适合自动化,审核人需要熟悉他们可能遇到的不同类型的结果。 确定的候选任务可以:
- 不显示预期任务
- 显示意外任务
- 将现实生活中的一项任务拆分为多个任务
- 部分捕获没有实际开始和结束的任务
Unassisted Task Mining 应用一种算法来识别任务,这些任务可能适合自动化或流程优化。 不保证 AI 算法一定会检测到任何内容,它可能会检测到不完整的流程,甚至比预期的更大的流程。 通过按照本文档中提供的步骤操作,审核人可以确定已识别的任务是否适合自动化。 由于无法保证无辅助任务挖掘能够检测到已知任务,或者能够找出每个变体或迭代,因此不应仅将其用于监控已知任务。 Task Mining更适合记录或审核已知任务的用例。
Unassisted Task Mining 会识别候选任务,然后根据其作为自动化机会的潜力对这些候选任务进行排序。 某些结果可能并不代表现实中的端到端任务,但审核人仍可以根据本文档中介绍的步骤将其识别为良好的自动化候选者。
Unassisted Task Mining 算法会查找最常出现且一致的步骤序列。 根据用户执行任务的一致性,现实生活中的任务可能会拆分为多个任务。 一项任务的结束可能是下一项任务的开始。 该任务可能仍适合实施自动化或流程改进操作。 在这种情况下,我们建议将这些子任务导出到流程描述文档 (.docx)。
根据记录的数据,Task Mining 算法可能会识别许多任务。 因此,审核人必须确定要首先分析的候选项目的优先级,以免将时间浪费在不太可能适合自动化候选项目的任务上。 “ 结果 ”选项卡上的“ 分析概述 ”和“ 任务”表格视图 为此优先级提供了输入。
“结果”中的任务根据其成为合适的自动化候选者的可能性进行排序。 任务在列表中的排名越高,就越有可能成为良好的自动化候选者。 考虑到包括可重复性和复杂性在内的各种因素,Unassisted Task Mining 算法已将包含“任务 1”的任务确定为最佳自动化候选者。 但是,此排名并不表示 Task Mining 结果的整体质量,但相对来说,“任务 1”比“任务 10”更有可能是更好的自动化候选者。
根据默认排名分析任务时,可能会出现此任务具有高度自动化潜力,但端到端任务并不完全正确的情况。 在这种情况下,建议根据不同的排名检查替代任务候选者。 作为审核人,您可以通过选择“任务”表格视图中的列标题的排序图标来更改标准排名。 这使您能够根据不同的指标来识别具有高度自动化潜力的任务。 找到具有代表性的任务后,您可以选择该任务并将其标记为“收藏夹”。
专注于排名较高的任务。 一般来说,排名越高的任务质量就越高。 排名过去 10 或 20 的候选任务质量通常较低。
调查不同任务的指标。 每个任务都会显示不同的指标,例如录制用户在此任务上花费的总时间、已执行此任务的录制用户的数量、任务中操作数量的中值等。 在分析中考虑这些指标,并根据项目的业务上下文应用您自己的条件。
例如,如果某项任务的总持续时间、追踪和操作数量明显短于另一项任务,则可能表明该任务的自动化潜力较低。 但是,请注意,对于 AI 算法识别的所有任务的“总持续时间”应为多长,没有总体准则。 所有 Task Mining 项目总持续时间。 应始终在特定项目的业务上下文中解释这些指标。
使用“收藏夹”和“重命名”功能。 在确定不同任务的优先级以进行更深入的分析时,概述已确定优先级甚至已经分析的内容非常重要。 将任务标记为收藏夹并使用描述性名称重命名任务有助于构建分析。
这些步骤基于屏幕。 任务及其步骤在唯一用户界面/屏幕级别显示,不代表单独的单击或键入操作。 AI 算法通常会将同一屏幕上发生的多次单击或键入操作归为一个步骤。 因此,该图表不会显示每次单击或键入操作。
一项任务至少需要两个步骤(屏幕)才能被标识为此类任务。 要让 Task Mining 算法识别任务,任务需要包含明确的开始和结束步骤。 因此,仅在一个屏幕上执行的操作不会被识别为任务。
不同任务的步骤相同。 步骤未绑定到一项特定任务。 在一个任务中发生的步骤也可能在另一任务中发生。
PII 掩码算法可能会错误地掩码或不掩码为 PII。 个人可识别信息 (PII) 模块是一种 AI 算法,用于检测屏幕中的 PII。 算法可能会出错,某些 PII 可能未被屏蔽,或者非 PII 的文本可能被屏蔽。 这些错误取决于检测到的屏幕上文本以及文本本身的上下文。 如果 OCR 未准确捕获文本或部分文本被截断,则可能无法掩盖文本。 此外,如果屏幕上的其他文字不同,则相同的文本有可能在一个屏幕中被识别为 PII,而在另一个屏幕中则不是 PII。
如果在检查追踪时某个任务看起来毫无意义,则它很可能不是一个高质量的任务。 该算法可以检测有噪声和不相关的任务,尤其是对于任务排名中排名较低的任务。 这些任务可长可短。 在检查一些追踪后,一旦弄清楚这一点,则不应浪费时间尝试解释它们。
查找流程的主体(80/20 规则)。 这些任务可能与预期的现实任务并不完全相符,而只是部分地涵盖了其中的某个部分。 如上所述,根据记录执行任务的用户所采取操作的变化,任务的某些步骤可能比其他步骤更一致,从而导致算法仅检测任务的某些步骤,而不是完整的端到端结束任务。
无论缺少多少步骤,该任务可能仍适合自动化。 可以在构建自动化时添加这些遗漏的步骤。
滚动浏览结果。 任务追踪和步骤屏幕截图按时间顺序排序。 因此,建议滚动列表以查看多个点的结果。
要仔细分析已确定优先级的任务,请按照以下步骤操作。 这将有助于区分自动化候选项目和嘈杂的任务
选择要进行自动化的任务后,我们建议您通过将所选任务导出到 UiPath Automation Hub 来提交自动化概念。