ai-center
2023.10
true
Importante :
A tradução automática foi aplicada parcialmente neste conteúdo.
Guia do usuário do AI Center
Automation CloudAutomation SuiteStandalone
Last updated 22 de out de 2024

Classificação do texto leve

Pacotes prontos para usar > Análise de idiomas da UiPath > LightTextClassification

Este é um modelo genérico e retreinável para classificação de texto. Ele oferece suporte a todos os idiomas baseados em caracteres latinos, como inglês, francês, espanhol e outros. Este pacote de ML deve ser treinado e, se implantado sem treinamento primeiro, a implantação falhará com um erro informando que o modelo não foi treinado. Este modelo opera em Bag of Words. Este modelo fornece explicabilidade com base em n-gramas.

Detalhes do modelo

Tipo de Entrada

JSON e CSV

Descrição da entrada

Texto a ser classificado como string: 'I loved this movie.'

Descrição da saída

JSON com classe e confiança (entre 0 e 1).

{
    "class": "7",
    "confidence": 0.1259827300369445,
    "ngrams": [
        [
            "like",
            1.3752658445706787
        ],
        [
            "like this",
            0.032029048484416685
        ]
    ]
}{
    "class": "7",
    "confidence": 0.1259827300369445,
    "ngrams": [
        [
            "like",
            1.3752658445706787
        ],
        [
            "like this",
            0.032029048484416685
        ]
    ]
}

Recomendar GPU

A GPU não é necessária.

Treinamento Habilitado

Por padrão, o treinamento está habilitado.

Pipelines

Este pacote suporta todos os três tipos de pipelines (Treinamento Completo, Treinamento e Avaliação). O modelo usa técnicas avançadas para encontrar um modelo de alto desempenho usando a pesquisa de hiperparâmetros. Por padrão, a pesquisa de hiperparâmetros (a variável BOW.hyperparameter_search.enable ) está habilitada. Os parâmetros do modelo de maior desempenho estão disponíveis no Relatório de Avaliação.

Formato do conjunto de dados

Estão disponíveis três opções para estruturar seu conjunto de dados para esse modelo: JSON, CSV e o formato JSON do AI Center (que é também o formato de exportação da ferramenta de rotulagem. O modelo lerá todos os arquivos CSV e JSON no diretório especificado. Para todo formato, o modelo espera duas colunas ou duas propriedades: dataset.input_column_name e dataset.target_column_name por padrão. Os nomes dessas duas colunas e/ou diretórios são configuráveis usando variáveis de ambiente.

Formato de arquivo CSV

Cada arquivo CSV pode ter qualquer número de colunas, mas apenas duas serão usadas pelo modelo. Essas colunas são especificadas pelos parâmetros dataset.input_column_name e dataset.target_column_name.

Verifique as variáveis de amostra e ambiente a seguir para obter um exemplo de formato de arquivo CSV.

text, label
I like this movie, 7
I hated the acting, 9text, label
I like this movie, 7
I hated the acting, 9

As variáveis de ambiente para o exemplo anterior seriam as seguintes:

  • dataset.input_format: auto
  • dataset.input_column_name: text
  • dataset.target_column_name: label

Formato de arquivo JSON

Vários pontos de dados podem fazer parte do mesmo arquivo JSON.

Verifique o exemplo a seguir e as variáveis de ambiente para obter um exemplo de formato de arquivo JSON.

[
  {
    "text": "I like this movie",
    "label": "7"
  },
  {
    "text": "I hated the acting",
    "label": "9"
  }
][
  {
    "text": "I like this movie",
    "label": "7"
  },
  {
    "text": "I hated the acting",
    "label": "9"
  }
]

As variáveis de ambiente para o exemplo anterior seriam as seguintes:

  • dataset.input_format: auto
  • dataset.input_column_name: text
  • dataset.target_column_name: label

formato de arquivo ai_center

Este é o valor padrão das variáveis de ambiente que podem ser definidas e este modelo lerá todos os arquivos em um diretório fornecido com uma extensão .json .

Verifique a amostra e as variáveis de ambiente a seguir para obter um exemplo de formato de arquivo ai_center.

{
    "annotations": {
        "intent": {
            "to_name": "text",
            "choices": [
                "TransactionIssue",
                "LoanIssue"
            ]
        },
        "sentiment": {
            "to_name": "text",
            "choices": [
                "Very Positive"
            ]
        },
        "ner": {
            "to_name": "text",
            "labels": [
                {
                    "start_index": 37,
                    "end_index": 47,
                    "entity": "Stakeholder",
                    "value": " Citi Bank"
                },
                {
                    "start_index": 51,
                    "end_index": 61,
                    "entity": "Date",
                    "value": "07/19/2018"
                },
                {
                    "start_index": 114,
                    "end_index": 118,
                    "entity": "Amount",
                    "value": "$500"
                },
                {
                    "start_index": 288,
                    "end_index": 293,
                    "entity": "Stakeholder",
                    "value": " Citi"
                }
            ]
        }
    },
    "data": {
        "cc": "",
        "to": "xyz@abc.com",
        "date": "1/29/2020 12:39:01 PM",
        "from": "abc@xyz.com",
        "text": "I opened my new checking account with Citi Bank in 07/19/2018 and met the requirements for the promotion offer of $500 . It has been more than 6 months and I have not received any bonus. I called the customer service several times in the past few months but no any response. I request the Citi honor its promotion offer as advertised."{
    "annotations": {
        "intent": {
            "to_name": "text",
            "choices": [
                "TransactionIssue",
                "LoanIssue"
            ]
        },
        "sentiment": {
            "to_name": "text",
            "choices": [
                "Very Positive"
            ]
        },
        "ner": {
            "to_name": "text",
            "labels": [
                {
                    "start_index": 37,
                    "end_index": 47,
                    "entity": "Stakeholder",
                    "value": " Citi Bank"
                },
                {
                    "start_index": 51,
                    "end_index": 61,
                    "entity": "Date",
                    "value": "07/19/2018"
                },
                {
                    "start_index": 114,
                    "end_index": 118,
                    "entity": "Amount",
                    "value": "$500"
                },
                {
                    "start_index": 288,
                    "end_index": 293,
                    "entity": "Stakeholder",
                    "value": " Citi"
                }
            ]
        }
    },
    "data": {
        "cc": "",
        "to": "xyz@abc.com",
        "date": "1/29/2020 12:39:01 PM",
        "from": "abc@xyz.com",
        "text": "I opened my new checking account with Citi Bank in 07/19/2018 and met the requirements for the promotion offer of $500 . It has been more than 6 months and I have not received any bonus. I called the customer service several times in the past few months but no any response. I request the Citi honor its promotion offer as advertised."

Para aproveitar o JSON de amostra anterior, as variáveis de ambiente precisam ser definidas da seguinte maneira:

  • dataset.input_format: ai_center
  • dataset.input_column_name: data.text
  • dataset.target_column_name: annotations.intent.choices

Treinamento na GPU ou na CPU

A GPU não é necessária para o treinamento

Variáveis de Ambiente

  • dataset.input_column_name
    • O nome da coluna de entrada que contém o texto.
    • O valor padrão é data.text.
    • Certifique-se de que esta variável esteja configurada de acordo com seu arquivo JSON ou CSV de entrada.
  • dataset.target_column_name
    • O nome da coluna de destino que contém o texto.
    • O valor padrão é annotations.intent.choices.
    • Certifique-se de que esta variável esteja configurada de acordo com seu arquivo JSON ou CSV de entrada.
  • dataset.input_format
    • O formato de entrada dos dados de treinamento.
    • O valor padrão é ai_center.
    • Os valores suportados são: ai_center ou auto.
    • Se ai_center for selecionado, apenas arquivos JSON serão suportados. Certifique-se de alterar também o valor de dataset.target_column_name para annotations.sentiment.choices se ai_center for selecionado.
    • Se auto for selecionado, os arquivos CoNLL e JSON serão suportados.
  • BOW.hyperparameter_search.enable
    • O valor padrão para este parâmetro é True. Se deixado ativado, isso encontrará o modelo de melhor desempenho no período de tempo determinado e os recursos de computação.
    • Isso também gerará um arquivo PDF HyperparameterSearch_report para mostrar as variações dos parâmetros que foram testados.
  • BOW.hyperparameter_search.timeout
    • O tempo máximo que a pesquisa de hiperparâmetro pode executar em segundos.
    • O valor padrão é 1800.
  • BOW.explain_inference
    • Quando isso é definido como True, durante o tempo de inferência quando o modelo é servido como ML Skill, alguns dos n-gramas mais importantes também serão retornados junto com a previsão.
    • O valor padrão é False.

Variáveis opcionais

Você pode adicionar outras variáveis opcionais clicando no botão Adicionar novo . No entanto, se você definir a variável BOW.hyperparameter_search.enable como True, os valores ideais dessas variáveis serão procurados. Para os seguintes parâmetros opcionais a serem usados pelo modelo, defina a variável de pesquisa BOW.hyperparameter_search.enable como False:
  • BOW.lr_kwargs.class_weight
    • Os valores suportados são: balanced ou None.
  • BOW.ngram_range
    • Faixa de comprimento de sequência de sequência de palavras consecutivas que podem ser consideradas como recursos para o modelo.
    • Certifique-se de seguir este formato: (1, x), em que x é o comprimento máximo da sequência que você deseja permitir.
  • BOW.min_df
    • Usado para definir o número mínimo de ocorrências do n-gram no conjunto de dados a serem considerados como um recurso.
    • Os valores recomendados estão entre 0 e 10.
  • dataset.text_pp_remove_stop_words
    • Usado para configurar se palavras de parada devem ou não ser incluídas na pesquisa (por exemplo, palavras como the, or).
    • Os valores suportados são: True ou False.

Dados

Arquivo CSV de avaliação

Este é um arquivo CSV com previsões sobre o conjunto de teste usado para avaliação. Este arquivo também contém os n-gramas que afetaram a previsão (independentemente do valor da variável BOW.explain_inference ).

Esta página foi útil?

Obtenha a ajuda que você precisa
Aprendendo RPA - Cursos de automação
Fórum da comunidade da Uipath
Uipath Logo White
Confiança e segurança
© 2005-2024 UiPath. Todos os direitos reservados.