document-understanding
2021.10
false
UiPath logo, featuring letters U and I in white
Non pris en charge par l'assistance

Guide de l'utilisateur de Document Understanding

Automation CloudAutomation Cloud Public SectorAutomation SuiteStandalone
Dernière mise à jour 11 nov. 2024

Utiliser Data Manager

Cette page décrit comment utiliser Data Manager pour labelliser un nouvel ensemble de données et recycler un modèle ML.

Accéder et configurer Data Manager

Lancez la session de labellisation de données créée dans Première expérience d'exécution (First Run Experience) et accédez aux paramètres pour configurer l'OCR.

Choisissez l'OCR que vous avez l'intention d'utiliser dans le menu déroulant de la Méthode OCR (OCR method). Pour UiPathDocumentOCR, collez la clé de licence Document Understanding (récupérez la clé API Document Understanding à partir de la page Admin > Licence (License)), puis collez l'URL OCR que vous avez générée lors du déploiement de UiPathDocumentOCR.



Configurez la pré-labellisation avec les modèles que vous avez déployés en suivant les instructions détaillées ici. Collez le point de terminaison public du modèle de compétence ML et la clé de licence Document Understanding, puis cliquez sur Enregistrer (Save).



Pour plus de détails, veuillez consulter la documentation ici : .

Importer des documents

Cliquez sur le bouton Importer (Import) depuis la session Data Manager.



Donnez un nom au jeu de données et cliquez sur Parcourir les fichiers à télécharger (Browse files to upload).



Sélectionnez le document que vous souhaitez télécharger.



Cliquez sur OUI (YES).



Pour plus de détails, veuillez consulter la documentation ici : Importer des documents.

Créer des champs d'extraction

Cliquez sur pour créer des champs à extraire.

Vous pouvez créer jusqu'à 40 champs.

Pour cet exercice de validation, vous pouvez créer des champs de facture courants tels que date, nom, numero-de-facture et total. Veuillez vous assurer de modifier le type de contenu en conséquence : date (date), nom (string), numéro de facture (string) et total (nombre).



Pour plus de détails, veuillez consulter la documentation ici : Créer et configurer des champs.

Labelliser des documents

Vous pouvez maintenant commencer à labelliser les documents.

Cliquez sur le bouton Prédire (Predict) en haut pour utiliser le modèle de facture de base pour prédire les libellés des champs définis et les corriger si la prédiction est erronée.

Pour modifier l'étiquette, faites glisser la souris sur le champ et appuyez sur le raccourci clavier pour le labelliser (par exemple, d pour labelliser la date dans l'exemple ci-dessous).

Utilisez la flèche du haut pour passer au document suivant jusqu'à ce que vous ayez terminé la validation des libellés pour toutes les factures téléchargées.

Remarque : étant donné que le modèle de base Factures (Invoices) a déjà très bien fonctionné et que l'exemple de facture est simple sans présenter trop de variations différentes, la précision de la prédiction est proche de 100 % dans ce cas et vous n'aurez peut-être pas besoin de corriger les étiquettes.


Pour plus de détails sur la labellisation des documents, veuillez consulter la documentation ici : Labelliser les documents.

Exporter des documents

Assurez-vous de sélectionner l'ensemble de données correct dans le filtrage des ensembles de données et cliquez sur le bouton Exporter (Export) .



Cliquez sur Exporter (Export).



Accédez à Ensembles de données (Datasets) sous le même projet AI Center : vous devriez pouvoir voir l'ensemble de données d'entraînement exporté.



Pour plus de détails, veuillez consulter la documentation : Exporter des documents.

Former un modèle personnalisé sur AI Center

Accédez à Pipelines > Créer un nouveau fichier (Create new). Veuillez sélectionner le type d'exécution d'évaluation, sélectionner le package de modèle et l'ensemble de données d'entrée.



Veuillez sélectionner le sous-dossier sous Exporter (Export) comme ensemble de données d'entrée.



Cliquez sur Créer (Create) pour démarrer le pipeline. L'exécution du pipeline sur les machines à processeur peut prendre 1 à 2 heures.

Déployer le modèle ML recyclé en tant que compétence ML

Accédez à Compétences ML (ML Skills) et créez une nouvelle compétence ML.

Choisissez le même package de modèle de facture créé auparavant. Comme nous avons reformé le modèle, il existe maintenant une nouvelle version mineure du package (1 vs 0). Assurez-vous de sélectionner le dernier.



Une fois la compétence ML créée, accédez à Modifier le déploiement actuel (Modify current deployment) pour rendre la compétence ML publique. Activez la bascule et cliquez sur Confirmer (Confirm).



Copiez l'URL de la compétence ML publique pour une utilisation ultérieure.



Félicitations ! Vous avez maintenant recyclé un modèle Facture (Invoice) avec votre propre ensemble de données et créé le point de terminaison pour accéder au modèle.

Cette page vous a-t-elle été utile ?

Obtenez l'aide dont vous avez besoin
Formation RPA - Cours d'automatisation
Forum de la communauté UiPath
Uipath Logo White
Confiance et sécurité
© 2005-2024 UiPath Tous droits réservés.