document-understanding
2022.4
true
UiPath logo, featuring letters U and I in white
Guide de l'utilisateur de Document Understanding
Automation CloudAutomation Cloud Public SectorAutomation SuiteStandalone
Last updated 24 oct. 2024

Pipelines d'entraînement

Important :

Taille minimale de l'ensemble de données

Pour exécuter avec succès un pipeline d'entraînement, nous recommandons fortement au moins 25 documents et au moins 10 échantillons de chaque champ étiqueté dans votre ensemble de données. Sinon, le pipeline renvoie l'erreur suivante : Dataset Creation Failed.

Formation sur GPU vs formation sur CPU

  • Pour les ensembles de données plus volumineux, vous devrez effectuer l'entraînement à l'aide du GPU. De plus, l'utilisation d'un GPU (AI Robot Pro) pour l'entraînement est au moins 10 fois plus rapide que l'utilisation d'un CPU (AI Robot).
  • La formation sur le processeur est uniquement prise en charge pour les ensembles de données d'une taille maximale de 5000 pages pour les paquets ML v21.10.x et jusqu'à 1000 pages pour les autres versions des paquets ML.
  • La formation CPU était limitée à 500 pages avant 2021.10, elle est montée à 5000 pages pour 2021.10 et avec 2022.4 elle redescendra à 1000 pages max.

Il existe deux manières d'entraîner un modèle de ML :

  • entraînement d'un modèle à partir de zéro
  • réentraînement d'un modèle prêt à l'emploi

L'entraînement d'un modèle à partir de zéro peut être effectué à l'aide du paquet ML DocumentUnderstanding, réalisant le processus selon l'ensemble de données fourni en entrée.

Le réentraînement peut être réalisé à l'aide de paquets ML prêts à l'emploi tels que Invoices, Receipts, Purchase Orders, Utility Bills, Invoices India, Invoices Australia, etc. En résumé, tout autre paquet ML d'extraction de données - à l'exception de DocumentUnderstanding. L'entraînement effectué à l'aide de l'un de ces packages a une entrée supplémentaire : un modèle de base. Nous appelons cela le réentraînement parce que vous ne partez pas de zéro mais à partir d'un modèle de base. Cette approche utilise une technique appelée l'apprentissage par transfert où le modèle tire parti des informations codées dans un autre modèle préexistant. Le modèle conserve certaines des connaissances prêtes à l'emploi, mais il apprend également des nouvelles données. Cependant, à mesure que la taille de votre ensemble de données d'entraînement augmente, le modèle de base pré-entraîné est de moins en moins important. Sa pertinence s'adresse principalement aux ensembles de données d'entraînement de petite à moyenne taille (jusqu'à 500-800 pages).

Configurez le pipeline d'entraînement comme suit :

  • Dans le champ Type de pipeline (Pipeline type), sélectionnez Exécution de pipeline d'entraînement (Training run).
  • Dans le champ Choisir le package (Choose package), sélectionnez le package que vous avez créé en fonction du paquet ML DocumentUnderstanding.
  • Dans le champ Choisir la version majeure du package (Choose package major version), sélectionnez une version majeure pour votre package.
  • Dans le champ Choisir la version mineure du package (Choose package minor version), sélectionnez une version mineure pour votre package. Il est fortement recommandé de toujours utiliser la version mineure 0 (zéro).
  • Dans le champ Choisir un ensemble de données d'entrée (Choose input dataset), sélectionnez un ensemble de données d'entrée représentatif.
  • Dans la section Entrer les paramètres (Enter parameters), entrez toutes les variables d'environnement définies et utilisées par votre pipeline, le cas échéant. Pour la plupart des cas d'utilisation, aucun paramètre n'a besoin d'être spécifié ; le modèle utilise des techniques avancées pour trouver une configuration performante. Cependant, voici quelques variables d'environnement que vous pouvez utiliser :
  • auto_retraining qui permet de boucler la boucle de réentraînement automatique (Auto-retraining Loop) ; si la variable est définie sur True, l'ensemble de données d'entrée doit être le dossier d'exportation associé à la session de labellisation où les données sont labellisées ; si la variable reste définie sur False, l'ensemble de données d'entrée doit correspondre au format de l'ensemble de données.
  • model.epochs permet de personnaliser le nombre d'époques pour le pipeline d'entraînement (la valeur par défaut est de 100).
    Remarque : pour les ensembles de données plus volumineux, contenant plus de 5000 pages, vous pouvez commencer par effectuer une exécution complète du pipeline avec le nombre d’époques (epochs) par défaut. Cela vous permet d’évaluer la précision du modèle. Après cela, vous pouvez réduire le nombre d’époques à environ 30 ou 40. Cette approche vous permet de comparer la précision des résultats et de déterminer si la réduction des époques aboutit à un niveau de précision similaire.

    Lorsque vous utilisez des ensembles de données plus petits, en particulier ceux de moins de 5000 pages, vous pouvez conserver le nombre d’époques par défaut.

  • Indiquez si vous souhaitez entraîner le pipeline sur GPU ou sur CPU. Le curseur Activer le GPU (Enable GPU) est désactivé par défaut, auquel cas le pipeline est entraîné sur CPU.
  • Sélectionnez l'une des options d'exécution du pipeline : Exécuter maintenant (Run now), Basé sur l'heure (Time based) ou Récurrent (Recurring). Si vous utilisez la variable auto_retraining, sélectionnez Récurrent.


  • Après avoir configuré tous les champs, cliquez sur Créer (Create). Le pipeline est créé.

Cette page vous a-t-elle été utile ?

Obtenez l'aide dont vous avez besoin
Formation RPA - Cours d'automatisation
Forum de la communauté UiPath
Uipath Logo White
Confiance et sécurité
© 2005-2024 UiPath Tous droits réservés.