document-understanding
2023.10
true
Guía del usuario de Document Understanding
Automation CloudAutomation Cloud Public SectorAutomation SuiteStandalone
Last updated 5 de sep. de 2024

Requisitos de hardware

Running the Document UnderstandingTM ML Packages on a GPU includes an optimization meant to accelerate the training process.

Matriz de compatibilidad

Como resultado, el entrenamiento en la GPU es cinco veces más rápido que en la CPU (antes era entre 10 y 20 veces más rápido). Esto también permite entrenar modelos en CPU con hasta 5000 páginas (anteriormente el máximo eran 500).

Ten en cuenta que entrenar modelos Document Understanding en la GPU requiere una GPU con al menos 11 GB de RAM de vídeo para funcionar correctamente.

Utiliza la siguiente tabla para comprobar la compatibilidad entre los paquetes ML, la versión de CUDA y la versión del controlador de la GPU.

versión de paquetes ML

Versión de CUDA

Versión de cudDNN

Controlador de NVIDIA (versión inferior compatible)

Generación de hardware

2023.10

CUDA 11.8 o más reciente

cuDNN 8.2.0 o más reciente

R450.80.04

Ampere, Turing, Volta, Pascal, Maxwell, Kepler

CUDA es compatible con versiones anteriores, lo que significa que las aplicaciones CUDA existentes pueden seguir utilizándose con versiones CUDA más recientes.

Aquí puedes encontrar más información sobre compatibilidad.

Uso de CPU y GPU

Puedes utilizar el marco de Document Understanding para leer texto utilizando un motor OCR, clasificar los documentos y extraer información de los mismos. Mientras que las tareas de clasificación y extracción se ejecutan en la CPU, se recomienda ejecutar OCR en la GPU (aunque también se proporciona una versión para CPU en caso de que no se disponga de GPU).

La implementación local se realiza mediante Automation Suite y sus requisitos de hardware.

Puedes utilizar el mismo tipo de máquina virtual tanto para los extractores como para los clasificadores, la única diferencia es el tamaño de la infraestructura. Se recomienda utilizar el motor OCR con una máquina virtual de GPU. En la sección Matriz de compatibilidad se describen la compatibilidad entre los paquetes ML, la versión de CUDA y la versión del controlador de la GPU.

Tomemos un ejemplo real para comprender mejor los requisitos de hardware.

Paquete MLRequisitos de hardwareCapacidad
Paquetes de extractor (Facturas, Recibos, Órdenes de compra, etc.) Utilizar una máquina virtual con un mínimo de 2 núcleos de CPU y 8 GB de RAMSe pueden procesar 25 000 páginas al día o 5 millones de páginas al año, siempre que el tráfico sea constante (sin subidas repentinas).
Paquetes de clasificador (DocumentClassifier) Utilizar una máquina virtual con un mínimo de 2 núcleos de CPU y 8 GB de RAMPueden procesar 40 000 documentos/día u 8 millones de documentos/año, suponiendo que el tráfico sea perfectamente constante (sin picos).
OCRRequiere un mínimo de 8 GB de RAM si se ejecuta en la CPU. No hay requisitos si se ejecuta en GPU. Se pueden procesar 50 000 páginas/día.
OCR_CPURequiere un mínimo de 4 GB de RAM.Se pueden procesar 50 000 páginas/día.

Ejemplo: si procesas 10 millones de páginas/año, necesitas una máquina virtual con 4 núcleos de CPU, 16 GB de RAM para el extractor, otra para el clasificador y una tercera máquina virtual con un núcleo de GPU NVidia para el motor OCR.

También puedes optar por utilizar una sola máquina virtual para el extractor y el clasificador, lo que significa que necesitarás una sola máquina virtual con 8 núcleos de CPU y 32 GB de RAM.

Nota: Siempre puedes utilizar máquinas virtuales con CPU/GPU más potentes para aumentar el número de documentos procesados al día.
  • Matriz de compatibilidad
  • Uso de CPU y GPU

¿Te ha resultado útil esta página?

Obtén la ayuda que necesitas
RPA para el aprendizaje - Cursos de automatización
Foro de la comunidad UiPath
Uipath Logo White
Confianza y seguridad
© 2005-2024 UiPath. Todos los derechos reservados.