document-understanding
2021.10
false
Guía del usuario de Document Understanding
Automation CloudAutomation Cloud Public SectorAutomation SuiteStandalone
Last updated 29 de jul. de 2024

Procesos completos

Un proceso completo ejecuta conjuntamente un proceso de entrenamiento y un proceso de evaluación.

Importante:

Tamaño mínimo del conjunto de datos

Para ejecutar con éxito un proceso de entrenamiento, recomendamos encarecidamente al menos 25 documentos y al menos 10 muestras de cada campo etiquetado en tu conjunto de datos. En caso contrario, el proceso genera el siguiente error: Dataset Creation Failed.

Entrenamiento en la GPU frente a la CPU

  • Para conjuntos de datos más grandes, es necesario entrenar con la GPU. Sin embargo, utilizar una GPU (AI Robot Pro) para el entrenamiento es como mínimo cinco veces más lento que utilizar una CPU (AI Robot).
  • El entrenamiento en CPU solo se admite para conjuntos de datos de hasta 5000 páginas de tamaño para Paquetes ML v21.10.x y de hasta 1000 páginas para otras versiones de Paquetes ML. El entrenamiento en la CPU en lugar de en la GPU también puede dar lugar a un modelo menos preciso (entre un 0 y un 5 %).
  • El entrenamiento de la CPU estaba limitado a 500 páginas antes de 2021.10, ascendió a 5000 páginas para 2021.10, y con 2022.4 volverá a descender a 1000 páginas como máximo.

Entrenar y evaluar un modelo al mismo tiempo

Configura el proceso de entrenamiento como sigue:

  • En el campo Tipo de proceso, selecciona Ejecución de proceso completo.
  • En el campo Elegir paquete, selecciona el paquete que deseas entrenar y evaluar.
  • En el campo Elegir la versión principal del paquete, selecciona una versión principal para tu paquete.
  • En el campo Elegir la versión secundaria del paquete, selecciona una versión secundaria para tu paquete. Se recomienda encarecidamente usar siempre la versión menor 0 (cero).
  • En el campo Elegir conjunto de datos de entrada, selecciona un conjunto de datos de entrenamiento representativo.
  • En el campo Elegir conjunto de datos de evaluación, selecciona un conjunto de datos de evaluación representativo.
  • En la sección Introducir parámetros, escribe cualquier variable de entorno definida y utilizada por tu proceso, si la hubiera. Para la mayoría de los casos de uso, no es necesario especificar ningún parámetro; el modelo usa técnicas avanzadas para encontrar una configuración eficaz. Sin embargo, aquí hay algunas variables de entorno que podrías usar:
  • auto_retraining, que te permite completar el Bucle de reentrenamiento automático; si la variable se establece como Verdadero, el conjunto de datos de entrada debe ser la carpeta de exportación asociada a la sesión de etiquetado en la que se etiquetan los datos; si la variable permanece como Falso, el conjunto de datos de entrada debe corresponder al siguiente formato del conjunto de datos.
  • model.epochs que personaliza el número de epochs para el proceso de entrenamiento (el valor predeterminado es 100).
  • Selecciona si quieres entrenar el proceso en la GPU o en la CPU. El control deslizante Habilitar GPU está deshabilitado de forma predeterminada, en cuyo caso el proceso se entrena en la CPU.
  • Selecciona una de las opciones sobre cuándo debe ejecutarse el proceso: Ejecutar ahora, Basado en el tiempo o Recurrente. En caso de que estés usando la variable auto_retraining, selecciona Recurrente.


Tras configurar todos los campos, haz clic en Crear. El proceso se creará.

Artefactos

En el caso de un proceso de evaluación, el panel de resultados también incluye una carpeta artifacts / eval_metrics que contiene dos archivos:



  • evaluation_default.xlsx es una hoja de cálculo de Excel con una comparación paralela de datos reales frente al valor predicho para cada campo predicho por el modelo, así como una métrica de precisión por documento, en orden de precisión ascendente. Por lo tanto, los documentos más inexactos se presentan en la parte superior para facilitar el diagnóstico y la resolución de problemas.
  • evaluation_metrics_default.txt contiene las puntuaciones F1 de los campos que se predijeron.

    En el caso de los elementos de línea, se obtiene una puntuación global para el conjunto de todas las columnas.

  • Entrenar y evaluar un modelo al mismo tiempo
  • Artefactos

¿Te ha resultado útil esta página?

Obtén la ayuda que necesitas
RPA para el aprendizaje - Cursos de automatización
Foro de la comunidad UiPath
Uipath Logo White
Confianza y seguridad
© 2005-2024 UiPath. Todos los derechos reservados.