ai-center
2021.10
false
AI Center - Guide de l'utilisateur
Automation CloudAutomation SuiteStandalone
Last updated 6 juin 2024

Classification de texte multilingue

Packages prêts à l'emploi (Out of the Box Packages) > Analyse du langage UiPath (UiPath Language Analysis) > MultiLingualTextClassification

Il s'agit d'un modèle générique réentraîné pour la classification de texte. Ce paquet ML doit être entraîné, et s'il est déployé sans entraînement au préalable, le déploiement échouera avec une erreur indiquant que le modèle n'a pas été entraîné. Il est basé sur BERT, une méthode auto-supervisée de pré-entraînement des systèmes de traitement du langage naturel. Un GPU est recommandé, en particulier pendant la formation. Un GPU offre une amélioration de la vitesse d'environ 5 à 10 fois.

Langues

Ce modèle multilingue prend en charge les langues répertoriées ci-dessous. Ces langues ont été choisies car elles représentent les 100 premières langues les plus utilisées sur Wikipédia :

  • Afrikaans
  • Albanais
  • Arabe
  • Aragonais
  • arménien
  • asturien
  • Azerbaïdjanais
  • Bachkir
  • Basque
  • bavarois
  • Biélorusse
  • bengali
  • Bishnupriya Manipuri
  • Bosniaque
  • breton
  • Bulgare
  • Birman
  • Catalan
  • cebuano
  • Tchétchène
  • Chinois (simplifié)
  • Chinois (traditionnel)
  • Tchouvache
  • croate
  • Tchèque
  • Danois
  • Néerlandais
  • Anglais
  • estonien
  • Finnois
  • Français
  • galicien
  • géorgien
  • Allemand
  • Grec
  • gujarati
  • haïtien
  • Hébreu
  • Hindi
  • Hongrois
  • Islandais
  • Ido
  • Indonésien
  • Irlandais
  • Italien
  • Japonais
  • javanais
  • kannada
  • Kazakh
  • kirghiz
  • Coréen
  • latin
  • letton
  • lituanien
  • lombard
  • bas saxon
  • luxembourgeois
  • macédonien
  • Malgache
  • malais
  • Malayalam
  • marathi
  • Minangkabau
  • népalais
  • newar
  • norvégien (Bokmål)
  • norvégien (Nynorsk)
  • occitan
  • persan (farsi)
  • piémontais
  • Polonais
  • Portugais
  • pendjabi
  • Roumain
  • Russe
  • écossais
  • Serbe
  • serbo-croate
  • sicilien
  • slovaque
  • slovène
  • azerbaïdjanais du sud
  • Espagnol
  • sundanais
  • Swahili
  • Suédois
  • Tagalog
  • Tadjik
  • tamil
  • Tatar
  • telugu
  • Thaï
  • Turque
  • Ukrainien
  • Ourdou
  • ouzbek
  • Vietnamien
  • volapük
  • waray-waray
  • gallois
  • frison occidental
  • pendjabi occidental
  • yoruba

Détails du modèle

Type d'entrée

JSON

Description de l'entrée

Texte à classer en tant que string : « J'ai adoré ce film ».

Description de la sortie

JSON avec prévision du nom de classe et niveau de confiance relatif à cette prévision de classe (entre 0 et 1).

Exemple :

{
  "prediction": "Positive", 
  "confidence": 0.9422031841278076
}{
  "prediction": "Positive", 
  "confidence": 0.9422031841278076
}

Recommander un GPU

Par défaut, un GPU est recommandé.

Formation possible

Par défaut, l'apprentissage est activé.

Pipelines

Les trois types de pipelines (complet, formation et évaluation) sont pris en charge par ce package. Pour la plupart des cas d'utilisation, aucun paramètre n'a besoin d'être spécifié ; le modèle utilise des techniques avancées pour trouver un modèle performant. Pour les entraînements subséquents au premier entraînement, le modèle utilise un apprentissage incrémentiel (c'est-à-dire que la version précédemment entraînée sera utilisée à la fin de l'exécution d'un entraînement).

Format d'ensemble de données

Trois options sont disponibles pour structurer votre jeu de données pour ce modèle : JSON, CSV et AI Center au format JSON. Le modèle lira tous les fichiers CSV et JSON dans le répertoire spécifié. Pour chaque format, le modèle attend deux colonnes ou deux propriétés, dataset.input_column_name et dataset.target_column_name Par défaut Les noms de ces deux colonnes et/ou répertoires sont configurables à l'aide de variables d'environnement.

Format de fichier CSV

Chaque fichier CSV peut avoir n'importe quel nombre de colonnes, mais seules deux seront utilisées par le modèle. Ces colonnes sont spécifiées par dataset.input_column_name et dataset.target_column_name paramètres.

Consultez l'exemple et les variables d'environnement suivants pour obtenir un exemple de format de fichier CSV.

text, label
I like this movie, 7
I hated the acting, 9text, label
I like this movie, 7
I hated the acting, 9

Les variables d'environnement de l'exemple précédent seraient les suivantes :

  • dataset.input_format: auto
  • dataset.input_column_name: text
  • dataset.nom_colonne_sortie : label

Format de fichier JSON

Plusieurs points de données peuvent faire partie du même fichier JSON.

Consultez l'exemple et les variables d'environnement suivants pour obtenir un exemple de format de fichier JSON.

[
  {
    "text": "I like this movie",
    "label": "7"
  },
  {
    "text": "I hated the acting",
    "label": "9"
  }
][
  {
    "text": "I like this movie",
    "label": "7"
  },
  {
    "text": "I hated the acting",
    "label": "9"
  }
]

Les variables d'environnement de l'exemple précédent seraient les suivantes :

  • dataset.input_format: auto
  • dataset.input_column_name: text
  • dataset.nom_colonne_sortie : label

format de fichier ai_center

Il s'agit de la valeur par défaut des variables d'environnement qui peuvent être définies, et ce modèle lira tous les fichiers dans un répertoire fourni avec une extension .json .

Consultez l'exemple et les variables d'environnement suivants pour obtenir un exemple de format de fichier ai_center.

{
    "annotations": {
        "intent": {
            "to_name": "text",
            "choices": [
                "TransactionIssue",
                "LoanIssue"
            ]
        },
        "sentiment": {
            "to_name": "text",
            "choices": [
                "Very Positive"
            ]
        },
        "ner": {
            "to_name": "text",
            "labels": [
                {
                    "start_index": 37,
                    "end_index": 47,
                    "entity": "Stakeholder",
                    "value": " Citi Bank"
                },
                {
                    "start_index": 51,
                    "end_index": 61,
                    "entity": "Date",
                    "value": "07/19/2018"
                },
                {
                    "start_index": 114,
                    "end_index": 118,
                    "entity": "Amount",
                    "value": "$500"
                },
                {
                    "start_index": 288,
                    "end_index": 293,
                    "entity": "Stakeholder",
                    "value": " Citi"
                }
            ]
        }
    },
    "data": {
        "cc": "",
        "to": "xyz@abc.com",
        "date": "1/29/2020 12:39:01 PM",
        "from": "abc@xyz.com",
        "text": "I opened my new checking account with Citi Bank in 07/19/2018 and met the requirements for the promotion offer of $500 . It has been more than 6 months and I have not received any bonus. I called the customer service several times in the past few months but no any response. I request the Citi honor its promotion offer as advertised."{
    "annotations": {
        "intent": {
            "to_name": "text",
            "choices": [
                "TransactionIssue",
                "LoanIssue"
            ]
        },
        "sentiment": {
            "to_name": "text",
            "choices": [
                "Very Positive"
            ]
        },
        "ner": {
            "to_name": "text",
            "labels": [
                {
                    "start_index": 37,
                    "end_index": 47,
                    "entity": "Stakeholder",
                    "value": " Citi Bank"
                },
                {
                    "start_index": 51,
                    "end_index": 61,
                    "entity": "Date",
                    "value": "07/19/2018"
                },
                {
                    "start_index": 114,
                    "end_index": 118,
                    "entity": "Amount",
                    "value": "$500"
                },
                {
                    "start_index": 288,
                    "end_index": 293,
                    "entity": "Stakeholder",
                    "value": " Citi"
                }
            ]
        }
    },
    "data": {
        "cc": "",
        "to": "xyz@abc.com",
        "date": "1/29/2020 12:39:01 PM",
        "from": "abc@xyz.com",
        "text": "I opened my new checking account with Citi Bank in 07/19/2018 and met the requirements for the promotion offer of $500 . It has been more than 6 months and I have not received any bonus. I called the customer service several times in the past few months but no any response. I request the Citi honor its promotion offer as advertised."

Pour tirer parti de l'exemple JSON précédent, les variables d'environnement doivent être définies comme suit :

  • dataset.input_format: ai_center
  • dataset.input_column_name: data.text
  • dataset.nom_colonne_sortie : annotations.intent.choices

Formation sur GPU ou CPU

Vous pouvez utiliser le GPU ou le CPU pour la formation. Nous vous recommandons d'utiliser le GPU car il est plus rapide.

Variables de l'environnement

  • dataset.input_column_name
    • Le nom de la colonne d'entrée contenant le texte.
    • La valeur par défaut est data.text.
    • Assurez-vous que cette variable est configurée en fonction de votre fichier JSON ou CSV d'entrée.
  • dataset.target_column_name
    • Le nom de la colonne cible contenant le texte.
    • La valeur par défaut est annotations.intent.choices.
    • Assurez-vous que cette variable est configurée en fonction de votre fichier JSON ou CSV d'entrée.
  • jeu de données.format_entrée
    • Le format d'entrée des données d'entraînement.
    • La valeur par défaut est ai_center.
    • Les valeurs prises en charge sont : ai_center ou auto .
    • Si ai_center est sélectionné, seuls les fichiers JSON sont pris en charge. Assurez-vous également de remplacer la valeur de dataset.target_column_name par annotations.sentiment.choices si ai_center est sélectionné.
    • Si auto est sélectionné, les fichiers CoNLL et JSON sont pris en charge.
  • modèle.époques
    • Le nombre d'époques.
    • Valeur par défaut : 100 .

Artefacts

Matrice de confusion



Rapport de classification

precision    recall  f1-score   support
         positive     0.94      0.94      0.94     10408
         negative     0.93      0.93      0.93      9592
    accuracy                              0.94     20000
   macro avg          0.94      0.94      0.94     20000
weighted avg          0.94      0.94      0.94     20000precision    recall  f1-score   support
         positive     0.94      0.94      0.94     10408
         negative     0.93      0.93      0.93      9592
    accuracy                              0.94     20000
   macro avg          0.94      0.94      0.94     20000
weighted avg          0.94      0.94      0.94     20000

Données

Fichier CSV d'évaluation

Il s'agit d'un fichier csv avec des prédictions sur l'ensemble de tests utilisé pour l'évaluation.

text,label,predict,confidence
I like this movie, positive, positive, 0.99
I hated the acting, negative, negative, 0.98text,label,predict,confidence
I like this movie, positive, positive, 0.99
I hated the acting, negative, negative, 0.98

Cette page vous a-t-elle été utile ?

Obtenez l'aide dont vous avez besoin
Formation RPA - Cours d'automatisation
Forum de la communauté UiPath
Uipath Logo White
Confiance et sécurité
© 2005-2024 UiPath Tous droits réservés.