- Notas de Versão
- Antes de começar
- Introdução
- Instalação do Automation Suite
- Migração e atualização
- Projetos
- Conjuntos de dados
- Pacotes de ML
- Pipelines
- Habilidades de ML
- Logs de ML
- Sobre os logs de ML
- Document Understanding no AI Center
- Como fazer
- Guia básico de solução de problemas

Guia do usuário do AI Center
Sobre os logs de ML
linkA página Logs de ML, acessível a partir do menu Logs de ML após selecionar um projeto, é uma visualização consolidada de todos os eventos relacionados ao projeto.
Eventos de validação do pacote de ML
link.zip
carregado em relação aos seguintes requisitos:
- Existe uma pasta raiz não vazia com o mesmo nome do arquivo zip.
- Existe um arquivo requirements.txt.
- Existe um arquivo chamado main.py, que implementa uma classe Main. A classe é validada adicionalmente para implementar uma função
predict
e uma função__init__
.
.zip
carregado em relação aos seguintes requisitos:
- Existe uma pasta raiz não vazia com o mesmo nome do arquivo zip.
- Existe um arquivo requirements.txt.
- Existe um arquivo chamado main.py, que implementa uma classe Main. A classe é validada adicionalmente para implementar uma função
predict
e uma função__init__
. - Um arquivo chamado train.py, que implementa uma classe Main. A classe é validada adicionalmente para implementar uma função
__init__
, assim como as funçõestrain
,evaluate
esave
. - Observe que um arquivo train_requirements.txt opcional pode ser adicionado; se não estiver incluído, a validação ainda será aprovada.
Os logs de ML para essa categoria ilustram os tempos inicial e final da validação e os erros reais da validação, se houver.
Eventos do pipeline
linkQuando um pipeline é iniciado ou falha, ele é exibido aqui.
Eventos da implantação da ML Skill
linkQuando uma habilidade é criada, o AI Center a implanta. Isso acarreta instalar dependências, executar uma série de verificações e otimizações de segurança, configurar a rede no namespace do tenant, criar um contêiner com um determinado número de réplicas do pacote correspondente e, finalmente, verificar a integridade da habilidade.
Os logs de ML para essa categoria ilustram os tempos inicial e final da implantação e os erros reais da implantação, se houver.
Eventos de previsões da ML Skill
linkQuando uma habilidade ao vivo está servindo, se houver uma falha de previsão (uma exceção lançada pelo código do Python), a exceção correspondente estará sob esse componente.