document-understanding
2022.10
false
重要 :
このコンテンツの一部は機械翻訳によって処理されており、完全な翻訳を保証するものではありません。
Document Understanding ガイド
Automation CloudAutomation Cloud Public SectorAutomation SuiteStandalone
Last updated 2024年9月4日

ハードウェア要件

GPU で Document Understanding ML パッケージを実行すると、パッケージに含まれる、トレーニング プロセスを加速させるための最適化機能が働きます。

相互運用性マトリクス

結果として GPU と CPU でのトレーニング速度の差が縮まり、GPU でのトレーニング速度は CPU の 5 倍になりました (以前は 10 倍から 20 倍高速でした)。また、CPU で最大 5000 ページまでトレーニングできるようになりました (以前は最大 500 ページ)。

GPU で Document Understanding モデルのトレーニングを問題なく実行するには、11 GB 以上のビデオ RAM を搭載した GPU が必要です。

ML パッケージ、CUDA、GPU ドライバーの対応バージョンを確認するには、以下の表を使用します。

ML パッケージのバージョン

CUDA のバージョン

NVIDIA ドライバー (最も低い対応バージョン)

ハードウェア世代

2022.10CIDA 11.3R450.80.03Ampere、Turing、Volta、Pascal、Maxwell、Kepler
2022.4CUDA 11.3R450.36.06Ampere、Turing、Volta、Pascal、Maxwell、Kepler

CUDA には後方互換性があるため、既存の CUDA アプリケーションは引き続き新しいバージョンの CUDA で使用できます。

互換性について詳しくは、こちらをご覧ください。

CPU と GPU の使用

Document Understanding フレームワークを使用すると、OCR エンジンを使用してテキストを読み取り、ドキュメントを分類し、ドキュメントから情報を抽出できます。分類タスクや抽出タスクを CPU で実行する一方、OCR は GPU で実行することをお勧めします (ただし、GPU が利用できない場合のために CPU バージョンも用意されています)。

オンプレミスのデプロイは、Automation Suite とそのハードウェア要件を使用して行います。

抽出器と分類器の両方に同じ種類の仮想マシンを使用できます。唯一の違いはインフラストラクチャのサイズです。OCR エンジンは GPU 仮想マシンで使用することをお勧めします。ML パッケージ、CUDA のバージョン、GPU ドライバーのバージョンの相互運用性については、「相互運用性マトリクス」のセクションをご覧ください。

実際の例を見ながらハードウェア要件の理解を深めていきましょう。

サービス

ハードウェア要件

機能

抽出器

2 コアの CPU と 8 GB の RAM を搭載した仮想マシンを使用

トラフィックが完全に一定 (スパイクなし) だとすると、25,000 ページ/日または 500 万ページ/年を処理できます。

分類器

2 コアの CPU と 8 GB の RAM を搭載した仮想マシンを使用

トラフィックが完全に一定 (スパイクなし) だとすると、40,000 ドキュメント/日または 800 万ドキュメント/年を処理できます。

OCR

GPU 仮想マシンでの使用を推奨

50,000 ページ/日を処理できます。

: 年に 1,000 万ページを処理する場合、抽出器用に 4 コアの CPU と 16 GB の RAM を備えた仮想マシンが 1 台、分類器用に同じ仕様の仮想マシンがもう 1 台、および OCR エンジン用に NVIDIA GPU コアを備えた 3 台目の仮想マシンが必要です。

抽出器と分類器の両方に 1 台の仮想マシンのみを使用することもできます。この場合、8 コアの CPU と 32 GB の RAM を持つ仮想マシンが 1 台必要です。

注: より処理能力の高い CPU/GPU 仮想マシンを使用して、いつでも 1 日あたりのドキュメント処理数を増やすことができます。
  • 相互運用性マトリクス
  • CPU と GPU の使用

このページは役に立ちましたか?

サポートを受ける
RPA について学ぶ - オートメーション コース
UiPath コミュニティ フォーラム
Uipath Logo White
信頼とセキュリティ
© 2005-2024 UiPath. All rights reserved.