Abonnieren

UiPath Document Understanding

UiPath Document Understanding

Training Pipelines

🚧

Warnung!

Minimale Dataset-Größe
Für die erfolgreiche Ausführung von Trainingspipelines empfehlen wir dringend mindestens 25 Dokumente und mindestens 10 Beispiele für jedes beschriftete Feld in Ihrem Dataset. Andernfalls löst die Pipeline den folgenden Fehler aus: Dataset Creation Failed (Dataset-Erstellung fehlgeschlagen).


Training auf GPU vs. CPU
For larger datasets, you need to train using GPU. However, using a GPU (AI Robot Pro) for training is at least 5 times slower than using a CPU (AI Robot).
Training on CPU is only supported for datasets up to 5000 pages in size for ML Packages v21.10.x and up to 1000 pages for other versions of ML Packages. Training on CPU instead of GPU could also lead to a less accurate model (between 0-5%).
CPU-Training war vor Version 2021.10 auf 500 Seiten begrenzt. Seit 2021.10 sind es 5000 Seiten und ab 2022.4 wieder maximal 1000 Seiten.

Es gibt zwei Möglichkeiten, ein ML-Modell zu trainieren:

  • Training eines Modells von Grund auf
  • erneutes Trainieren eines out-of-the-Box Modells

Das Training eines Modells von Grund auf kann mit dem ML-Paket DocumentUnderstanding durchgeführt werden, was auf dem Dataset geschieht, der als Eingabe bereitgestellt wird.

Das erneute Training kann mit out-of-the-box ML-Paketen wie Invoices, Receipts, Purchase Orders, Utility Bills, InvoicesIndia, InvoicesAustralia usw. erfolgen – im Prinzip alle anderen ML-Datenextraktionspakete mit Ausnahme von DocumentUnderstanding. Das Training mit einem dieser Pakete hat ein Basismodell als zusätzliche Eingabe. Wir bezeichnen dies auch als erneutes Trainieren, da Sie nicht von vorne beginnen, sondern von einem Basismodell ausgehen. Dieser Ansatz nutzt eine Technik namens Transfer Learning, bei der das Modell die Informationen verwendet, die in einem anderen, bereits vorhandenen Modell codiert sind. Das Modell verfügt über einige der out-of-the-box Kenntnisse, aber es lernt auch aus den neuen Daten. Mit zunehmender Größe Ihres Trainings-Datasets kommt es jedoch immer weniger auf das vortrainierte Basismodell an. Dies ist hauptsächlich für kleine bis mittelgroße Trainingsdatensätze relevant (bis zu 500–800 Seiten).

Konfigurieren Sie die Pipeline für erneutes Training wie folgt:

In the Pipeline type field, select Train run.
In the Choose package field, select the package you created based on an out-of-the-box ML package.
In the Choose package major version field, select a major version for your package.
In the Choose package minor version field, select a minor version for your package. It is strongly recommended to always use minor version 0 (zero).
In the Choose input dataset field, select a representative training dataset.
In the Enter parameters section, enter any environment variables defined and used by your pipeline, if any. For most use cases, no parameter needs to be specified; the model is using advanced techniques to find a performant configuration. However, here are some environment variables you could use:

  • auto_retraining which allows you to complete the Auto-retraining Loop; if the variable is set to True, then the input dataset needs to be the export folder associated with the labeling session where the data is tagged; if the variable remains set to False, then the input dataset needs to correspond to the following dataset format.
  • model.epochs, die die Anzahl der Epochen für die Trainingspipeline anpasst (Standardwert: 100).

Select whether to train the pipeline on GPU or on CPU. The Enable GPU slider is disabled by default, in which case the pipeline is trained on CPU.
Select one of the options when the pipeline should run: Run now, Time based or Recurring. In case you are using the auto_retraining variable, select Recurring.

700700

After you configure all the fields, click Create. The pipeline is created.

Aktualisiert vor 8 Monaten


Training Pipelines


Auf API-Referenzseiten sind Änderungsvorschläge beschränkt

Sie können nur Änderungen an dem Textkörperinhalt von Markdown, aber nicht an der API-Spezifikation vorschlagen.